摘要: 当工业继续发展,一般消费者开始对于控制油门、刹车以及离合器等三个踏板的复杂操作模式感到厌烦。机械工程师开始思考如何以利用的,来简化使用的过程。扭力转换器便是在这样的情形之下被导入产品,成就了全新的使用经验。 扭力转换器取代了传统的机械式离合器,被装置在引擎与自排变速箱之间,能够将引擎的动力...

当工业继续发展,一般消费者开始对于控制油门、刹车以及离合器等三个踏板的复杂操作模式感到厌烦。机械工程师开始思考如何以利用的,来简化使用的过程。扭力转换器便是在这样的情形之下被导入产品,成就了全新的使用经验。
扭力转换器取代了传统的机械式离合器,被装置在引擎与自排变速箱之间,能够将引擎的动力平顺的传送到自排变速箱。
从图中可以清楚地看到,扭力转换器的离作方式与离合器之间截然不同。在扭力转换器之中,左侧为引擎动力输出轴,直接与泵轮外壳连接。而在扭力转换器的左侧,则有一组涡轮,透过轴与位于右侧的变速系统连接。导轮与涡轮之间没有任何直接的连接机构,两者均密封在扭力转换器的外壳之中,而扭力转换器之内则是充满了黏性液体。
当引擎低速运转时,整个扭力转换器会同样低速运转,泵轮上的叶片会带动扭力转换器内的黏性液体,使其进行循环流动。但是由于转速太低,液体对于涡轮所施力之力道,并不足以推动车辆前进,车辆便可静止不动,便可达到如同离合器分离的状况。
当油门踏下,引擎转速提升,泵轮的转速将会同步提升,扭力转换器内的液体流速持续增加,对于涡轮的施力继续增加,当其超过运转的阻力时,车辆便可以前进,动力便可传递至变速系统及车轮,达成动力传递的目的。
版权声明:除特别声明外,来源于网络 如有侵权请联系我们...